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Transcriptomic Variations
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~21,000 protein coding genes ~100,000 human transcripts
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RNA Sequencing

Isolate Transcript RNA

N DNA
VNN — JO00000K
v

Fragmented DNA

Ian~scqlb rary riady
whnw: uenced

Reverse Transcription

Fragment cDNA

Size Selection

Sequencing of each end

_ li Paired-end reads




Outline of My Talk

Isoform-specific gene expression estimation

Isoform-specific differential expression
between conditions

Differential alternative splicing between
conditions



Part I: Isoform-Specific Gene Expression
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Challenge: Non-uniform Read Distribution

Most methods assume
sequencing reads are
uniformly distributed along
transcripts

However, true distributions
often deviate substantially
from uniformity

Appropriate modeling of IL15RA
non-uniformity is critical for 1111 AT
accurate estimation of lL__..H |[ A

isoform expression -



Our Approach — PennSeq

Existing methods often take parametric-based approaches

Non-uniform read distributions can vary substantially from
gene to gene, or even different isoforms within the same gene

Parametric models are unlikely to capture all factors that lead
to non-uniformity

Our goal: develop a method that allows each isoform to have
its own non-uniform distribution

PennSeq does not make distributional assumptions, but rather
let the data speak for themselves

PennSeq. Hu et al. Nucleic Acids Research. 2014, 42(3):e20.



Observed Likelihood
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Read Start Distribution

Most existing methods assumes that the read start position is
uniformly distributed, i.e., h(rs)= e
| L —L(r,s)+1

Our approach
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FLUX

%g Simulation Setup

SIMULATOR

Read coverage in selected genes
http://sammeth.net/confluence/display/SIM
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Comparison of Estimation Accuracy

Measure of estimation accuracy

R? coefficient of determination (i.e. squared Pearson correlation) between
estimated isoform relative abundance and true value.
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Comparison based on Benchmark Data

MAQC (MicroArray Quality Control data)

gRT-PCR measurements available (treated as gold standard)
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Isoforms with underestimated expression levels are typically from genes with severe
. . 12
non-uniformity and low-to-moderate coverage.



Part Il: Isoform-Specific Differential Expression

No. of read pairs

Condition A ' — from isoform 1
= —
e.g. normal cells

Condition B - — J F
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e.g. cancer cells

Analytical challenges

 Several sources of variation

— Isoform expression estimation uncertainty
— Variations across biological replicates
* |nfluence from covariates/confounders

— E.g. age, gender, environment etc
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Existing Methods and Limitations

* Cuffdiff, baySeq, EBSeq, NOlseq

— Account for isoform expression estimation
uncertainty

— Cannot adjust covariates/confounders

* DESeq, DESeq2, edgeR
— Can adjust covariates/confounders
— Count based methods

— Cannot model isoform expression estimation
uncertainty
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Our Approach — MetaDiff

Goal of random-effects meta-regression: synthesize
results of multiple studies to test moderator effect

Random-effects Isoform differential

meta-regression expression
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MetaDiff. Jia et al. BMC Bioinformatics: in press.
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Model Setup

log(Y;) =Po+B1X;i +P2Z; +U; + e;

Y;: estimated isoform expression level for subject i
X;: phenotype of interest for subject i, e.g., disease status
Z;: covariate/confounder variable, e.g., age, gender

U;: error term due to isoform expression estimation
uncertainty (within sample variation )
U;~N(0,0;%), where ;% is known

e;: error term due to unmodeled differences between
subjects (between sample variation )
e;~N(0,72%), where 72 is unknown

Test: likelihood ratio test (BcLR) or t-test



-log10(p-value) (observed)

Scenario I: no confounder

Comparison with Other Methods
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Part Ill: Differential Alternative Splicing

* Exon-based methods

— Compare exon-inclusion levels (i.e., fraction of
transcripts with the exon included) between
conditions

— Software: MISO, MATS/rMATS, DEXSeq
e Gene-based methods

— Compare isoform relative abundances between
conditions

— Software: Cuffdiff, Splicing Compass, DiffSplice,
IUTA
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Gene Structure

14 virtual exons
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Gene Structure

1 3 4 5 6 7 8 9
14 virtual exons
Only alternatively spliced exons are informative for DAS
9 informative for AS [
e 5 uninformative 1
* DEXSeq: test differential exon usage for all 14 virtual exons
 rMATS: terminal exons cannot be tested due to requirement of

flanking exons 20



Grouping of Alternatively Spliced Exons
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Our Approach — PennDiff

Stage I: quantification of AS using exon-inclusion level

e Estimate isoform relative abundances for a given gene using
existing software (e.g., PennSeq, Cufflinks, RSEM etc.)

e Estimate exon-inclusion level for each alternatively spliced
exon e in subject i : X o = ZQIJ

jel,

where le is the set of isoforms with exon e included

Note: exons from the same group will have the same exon-
inclusion level = only need to perform one test for each group,
which will reduce the number of multiple testing



Our Approach — PennDiff

Stage Il: detecting DAS between two conditions (A vs. B)

Assume exon-inclusion level for exon group g in subject i follows a Beta
distribution with mean u; ,, and precision parameter @,

Gaussian copula marginal regression

0 Marginal model: h|E(X; )| = logit(pim) = Bo + BmZi, Where

X; m is exon-inclusion level for exon group m in subject i
Z; is condition indicator for subject i (1 for condition A, 0 for condition B)

0 Joint model: @y {®~[F(X; )] ... @7 F (X m)] | T}

Exon-based test: H,: S, = 0 for exon group m

Gene-based test: Hy:B; = - = B, = 0 for all m exon groups



Advantage of PennDiff

* Grouping exons avoids multiple testing for “exons”
originated from the same isoform

* Utilize all available sequencing reads in exon-
inclusion level estimation; this is in sharp contrast to
DEXSeq, rMATS that only use exon+junction reads

* Collapsing isoforms sharing the same alternatively
spliced exons reduces the impact of isoform
expression estimation uncertainty and yields more
accurate estimate of exon-inclusion level



Performance of Exon-based Tests

Comparison of Power

80% m PennDiff = DEXSeq = rMATS

28% 79.3  79.6
() 73.7 76.8

>0.05 >0.1 >0.15 >0.2
Exon-inclusion level difference

123 DEXSeq

rMATS = = '
) -

2687 PennDiff
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Performance of Gene-based Tests

Comparison of Power
30%
13%

69.9 72.0 68.5
67.5 64.0 67.1

m PennDiff mIUTA = SplicingCompass m Cuffdiff
75.9
74.0 71.4

>0.05 >0.1 >0.15 >0.2
Hellinger distance

PennDiff 395

IUTA f

ompass
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Application to Human Eyes

Retnal Pigment Epithelium (RP

NELL2

DAS detected by
Penndiff, but missed
by other methods

RPKM RPKM RPKM RPKM RPKM RPKM RPKM RPKM

®* RNA-Seq: 8 post-mortem human eyes
® DAS analysis between retina and retinal pigment
epithelium (RPE) using PennDiff, Cuffdiff,

DEXSeq, and rMATS

retina
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Summary

® RNA-Seq is a powerful tool for studying
transcriptomic variations

® Major challenge: reads are much shorter than
transcripts from which they are derived from

® Proper RNA-Seq data analysis needs to consider
— Hidden information on isoform origin
— Sequencing bias
— Expression estimation uncertainty

— Biological variation
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