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Genome 
~21,000 protein coding genes 

Transcriptome 
~100,000 human transcripts 
    increase in complexity! 

   DNA 

pre-mRNA 

Isoform 1 

Isoform 2 

Isoform 3 

~90% of human genes are alternatively spliced 
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Isolate Transcript RNA 
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Fragment cDNA 

Size Selection 

                 Sequencing of each end 
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Reverse Transcription  
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RNA Sequencing 

Paired-end reads 



I. Isoform-specific gene expression estimation 
 

II. Isoform-specific differential expression 
between conditions 
 

III. Differential alternative splicing between 
conditions 
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Reads from 
Isoform 2 

Reads from 
Isoform 1 

Reads from 
Isoform 1 or 2 

Reads from 
Isoform 1 or 2 

Exon A + C + D + E 

Exon A + B + E 
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• Most methods assume 
sequencing reads are 
uniformly distributed along 
transcripts 
 

• However, true distributions 
often deviate substantially 
from uniformity 
 

• Appropriate modeling of 
non-uniformity is critical for 
accurate estimation of 
isoform expression 

TMEM64 

DAXX 

IL15RA 
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• Existing methods often take parametric-based approaches 
 

• Non-uniform read distributions can vary substantially from 
gene to gene, or even different isoforms within the same gene 
 

• Parametric models are unlikely to capture all factors that lead 
to non-uniformity 

 

• Our goal: develop a method that allows each isoform to have 
its own non-uniform distribution 
 

• PennSeq does not make distributional assumptions, but rather 
let the data speak for themselves 

7 
PennSeq. Hu et al. Nucleic Acids Research. 2014, 42(3):e20. 
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Most existing methods assumes that the read start position is 
uniformly distributed, i.e.,  

Our approach 
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http://sammeth.net/confluence/display/SIM 

Griebel et al. (2012) Nucleic Acids Research 

• Simulate systematic bias in the 
abundance and distribution of 
produced reads by in silico library 
preparation and sequencing 
 

• 100 million (M) paired-end reads 
• Randomly selected 10M, 20M, 

and 60M reads to evaluate the 
impact of sequencing depth 
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Simulation Setup 

Read coverage in selected genes 



Measure of estimation accuracy 
R2 coefficient of determination (i.e. squared Pearson correlation) between 
estimated isoform relative abundance and true value.  
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MAQC (MicroArray Quality Control data) 
qRT-PCR measurements available (treated as gold standard) 
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Isoforms with underestimated expression levels are typically from genes with severe 
non-uniformity and low-to-moderate coverage. 



Analytical challenges 
• Several sources of variation 

— Isoform expression estimation uncertainty 
— Variations across biological replicates 

• Influence from covariates/confounders 
— E.g. age, gender, environment etc 
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No. of read pairs  
from isoform 1 Condition A 

Condition B 

e.g. normal cells 

e.g. cancer cells 



• Cuffdiff, baySeq, EBSeq, NOIseq 
– Account for isoform expression estimation 

uncertainty 
– Cannot adjust covariates/confounders 

 

• DESeq, DESeq2, edgeR 
– Can adjust covariates/confounders 
– Count based methods 
– Cannot model isoform expression estimation 

uncertainty 
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Goal of random-effects meta-regression: synthesize 
results of multiple studies to test moderator effect 

 

15 MetaDiff. Jia et al. BMC Bioinformatics: in press. 



16 

𝒍𝒍𝒍𝒍𝒍𝒍 𝒀𝒀𝒊𝒊 = 𝜷𝜷𝟎𝟎 + 𝜷𝜷𝟏𝟏𝑿𝑿𝒊𝒊 + 𝜷𝜷𝟐𝟐𝒁𝒁𝒊𝒊 + 𝑼𝑼𝒊𝒊 + 𝒆𝒆𝒊𝒊 
 𝑌𝑌𝑖𝑖: estimated isoform expression level for subject i 
𝑋𝑋𝑖𝑖: phenotype of interest for subject i, e.g., disease status 
𝑍𝑍𝑖𝑖: covariate/confounder variable, e.g., age, gender 
 

𝑈𝑈𝑖𝑖: error term due to isoform expression estimation 
 uncertainty (within sample variation ) 
 𝑈𝑈𝑖𝑖~𝑁𝑁 0,𝜎𝜎𝑖𝑖2 , where 𝜎𝜎𝑖𝑖2 is known 
 

𝑒𝑒𝑖𝑖: error term due to unmodeled differences between 
 subjects (between sample variation ) 
  𝑒𝑒𝑖𝑖~𝑁𝑁 0, 𝜏𝜏2 , where 𝜏𝜏2 is unknown 
 
Test: likelihood ratio test (BcLR) or t-test 
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• Exon-based methods 
– Compare exon-inclusion levels (i.e., fraction of 

transcripts with the exon included) between 
conditions 

– Software: MISO, MATS/rMATS, DEXSeq 
• Gene-based methods 

– Compare isoform relative abundances between 
conditions 

– Software: Cuffdiff, Splicing Compass, DiffSplice, 
IUTA 
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14 virtual exons 
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14 virtual exons 
 

Only alternatively spliced exons are informative for DAS 
 

• 9 informative for AS 
• 5 uninformative 
• DEXSeq: test differential exon usage for all 14 virtual exons 
• rMATS: terminal exons cannot be tested due to requirement of 

flanking exons 
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exon-inclusion level = θ3  

exon-inclusion level = θ2  

exon-inclusion level = θ1 + θ3  
21 



• Estimate isoform relative abundances for a given gene using 
existing software (e.g., PennSeq, Cufflinks, RSEM etc.) 

• Estimate exon-inclusion level for each alternatively spliced 
exon e in subject 𝑖𝑖 : 
 

     where Ie is the set of isoforms with exon e included 
 
Note: exons from the same group will have the same exon-
inclusion level  only need to perform one test for each group, 
which will reduce the number of multiple testing 
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Stage I: quantification of AS using exon-inclusion level 



• Assume exon-inclusion level for exon group g in subject 𝑖𝑖 follows a Beta 
distribution with mean 𝜇𝜇𝑖𝑖,𝑚𝑚  and precision parameter 𝜑𝜑𝑚𝑚  
 

• Gaussian copula marginal regression 
 

o Marginal model: ℎ 𝐸𝐸(𝑋𝑋𝑖𝑖,𝑚𝑚) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙 𝜇𝜇𝑖𝑖,𝑚𝑚 = 𝛽𝛽0 + 𝛽𝛽𝑚𝑚𝑍𝑍𝑖𝑖, where  
 
𝑋𝑋𝑖𝑖,𝑚𝑚 is exon-inclusion level for exon group 𝑚𝑚 in subject 𝑖𝑖  
𝑍𝑍𝑖𝑖 is condition indicator for subject 𝑖𝑖 (1 for condition A, 0 for condition B) 

 
o Joint model: Φ𝑀𝑀 Φ−1 𝐹𝐹(𝑋𝑋𝑖𝑖,1) , … ,Φ−1 𝐹𝐹 𝑋𝑋𝑖𝑖,𝑀𝑀  | Г  

 

• Exon-based test:  𝐻𝐻0:𝛽𝛽𝑚𝑚 = 0 for exon group 𝑚𝑚 
 

• Gene-based test:  𝐻𝐻0:𝛽𝛽1 = ⋯ = 𝛽𝛽𝑀𝑀 = 0 for all 𝑚𝑚 exon groups 
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Stage II: detecting DAS between two conditions (A vs. B) 



• Grouping exons avoids multiple testing for “exons” 
originated from the same isoform 
 

• Utilize all available sequencing reads in exon-
inclusion level estimation; this is in sharp contrast to 
DEXSeq, rMATS that only use exon+junction reads 
 

• Collapsing isoforms sharing the same alternatively 
spliced exons reduces the impact of isoform 
expression estimation uncertainty and yields more 
accurate estimate of exon-inclusion level 

24 



Exon-inclusion level difference 

64.1 
73.7 76.8 79.3 

49.9 

61.8 
69.5 

79.6 

35.6 
40.2 40.3 42.1 

>0.05 >0.1 >0.15 >0.2

Comparison of Power 
PennDiff DEXSeq rMATS

28% 
80% 

2687 

231 

531 

123 

38 

PennDiff 

DEXSeq 

rMATS 
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Hellinger distance 

67.5 69.9 72.0 75.9 

59.8 
64.0 

68.5 
74.0 

51.8 
59.8 

67.1 
71.4 

4.9 7.5 
12.1 

18.1 

>0.05 >0.1 >0.15 >0.2

Comparison of Power 
PennDiff IUTA SplicingCompass Cuffdiff

13% 
30% 

579 

395 PennDiff 

276 127 

Cuffdiff IUTA 
Splicing Compass 
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NELL2  

retina 

• RNA-Seq: 8 post-mortem human eyes 
• DAS analysis between retina and retinal pigment 

epithelium (RPE) using PennDiff, Cuffdiff, 
DEXSeq, and rMATS 

DAS detected by 
Penndiff, but missed 
by other methods 

RPE 



• RNA-Seq is a powerful tool for studying 
transcriptomic variations 
 

• Major challenge: reads are much shorter than 
transcripts from which they are derived from 
 

• Proper RNA-Seq data analysis needs to consider  
— Hidden information on isoform origin 
— Sequencing bias 
— Expression estimation uncertainty 
— Biological variation 

28 
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